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EARLY TIME STRUCTURING OF VHANES: PRELIMINARY RESULTS

I. INTRODUCTION

An outstanding problem in the DNA BANE community is understanding the

generation, evolution, and decay of plasma irregularities associated with

high &ltitude nuclear bursts. Although the focus of this program has been

on late time structure (e.g., the determination of the freezing scale

size), an important aspect of the problem is early time structuxe. It is

known that structuring does occur at very early times in HANEs (t < sec);

however, the exact structuring mechanisms are not well understood, nor is

the impact of early time structure on late time structure known. For

example, does the early time structure act as a seed mechanism for late

time structure? Are the scale lengths of late time structure influenced by

the early time structure? Aside from structure questions, there is also

the possibility that early time structure can lead to the transport of

debris across magnetic field lines; for example, weapon debris may reach

much higher altitudes than expected.

Host of the research on early time stucturing has focussed on bursts

which are super-Alfvenic, i.e., Starfish or Checkmate. For the purposes of

discussion we will assume that the transition altitude for super-Alfvenic

to sub-Alfvenic bursts occurs at h - 1000 km. The actual height, of

course, depends upon ionospheric conditions at the time of burst (i.e., the

ambient Alfven velocity VAa) and the initial expansion velocity of the

debris (i.e., VdO). We will refer to sub-Alfvenic bursts as VHANEs (Very

High Altitude Nuclear Explosions) since they occur for h > 1000 km.

The initial work on early time structuring was done by Brecht and

Papadopoulos (1979) who suggested that a Rayleigh-Taylor instability can

initiate cross-field jetting of energetic ions. Their analysis is based

upon the usual MHD assumptions, i.e., a/at << and pi < < R, Ln: time

scales small compare to the ion cyclotron period, and length scales large

compared to the ion Larmor radius. They argued that the instability can be

driven by (1) laminar acceleration of a group of ions within the debris-air

shock, and/or (2) the centripetal force associated with the curved magnetic

field. For parameters relevant to Starfish they find that the instability

has a growth rate y - 71 sec- 1  (or growth time Tg - 14 msec) and a

transverse wavelength in the range 3-30 km. However, their analysis is not

entirely applicable to VHANEs (bursts at altitudes h > 1000 km) because

Manuscript approved April 26, 1990.
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their results are based on relationships appropriate for super-Alfvenic

plasma expansions. For example, they assume a highly compressed magnetic

field in the debris-air coupling shell, and neglect the deceleration of the

debris shell caused by the 'sweep-up' of the ambient magnetic field. These

considerations are reasonable for super-Alfvenic bursts; however, they are

not valid for sub-Alfvenic bursts. Moreover, recent theoretical work at

NRL on the structuring of sub-Alfvenic plasma expansions [e.g., AMPTE

magnetotail release (Bernhardt et al., 1987) and the NRL laser experiment

(Ripin et al., 1987)) has found that conventional MHD theory is not valid,

and that a modified MHD theory must be used which includes the Ball current

(Hassam and Huba, 1987,1988; Huba et al., 1987, 1989). Of course, hybrid

codes (Thomas and Brecht, 1988) and particle codes (Winske, 1989) are also

appropriate because they contain the proper ion dynamics.

Very recently, Sperling (1989) has argued that the unmagnetized ion

Rayleigh-Taylor instability (or the large Larmor radius instability as

referred to in the NRL laser experiment) is not relevant to VHANEs. A key

argument in this paper is that the conventional Rayleigh-Taylor growth rate

is less than the ion cyclotron frequency (i.e., yo - (g/Ln)1 /2 < aid.

First, we note that this conclusion is based only on a limited set of

parameters which are poorly known. Second, and more important, ye have

shown in Huba et al. (1989) and in the present paper that the criterion yO

< i is overly stringent, and that a high frequency instability can occur

for less stringent conditions; namely, for TO > (me/mi)"1/4Q • Thus, the

modified MHD theory of Hassam and Huba (1988), and the recently developed
V

kinetic theory of sub-Alfvenic expansions may apply to VHANEs.

The organization of the paper is as follows. In the next section we

estimate the 'effective gravity' associated with BANE and VHANE plasma

expansions. These results are based upon simplistic models and provide a

good starting point for more detailed calculations and numerical

investigations. In Section III ye describe the kinetic theory of auba et

al. (1989) as it pertains to the stability of sub-Alfvenic VBANE

expansions. In Section IV we apply the results of Sections II and III for

bursts at altitudes h - 400 kn, 1,000 km, and 10,000 km. Finally, in

Section V we summarize our results.
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II. DECELERATION MODELS

A. Mass Pick-up

We first estimate the deceleration of the debris-air coupling shell

caused by direct momentum coupling to the background plasma. We estimate

the deceleration of the shell by assuming a momentum conserving snowplow

model. We assume that

MVd a MoVdo (1)

where M is the mass, Vd is the velocity, and the subscript 0 denotes

initial values. Assuming a spherical expansion we take

3
M - M0 + -nR nut (2)

3 aa

where R is the radius of the shell, and na and ma are the density and mass

of the background plasma, respectively. We substitute (2) into (1) and

obtain

Vd= Vo ( + R3 (3)

is R/4rc ut1/3

where RM Is the equal mass radius given by RM - (3Mo/4n ama)  Taking

the first derivative of (3) we obtain the effective gravitational

acceleration gM associated with the deceleration

dVd 2 R 3-3

d t - .1V O+-;3 (4)

From (4) we find that the maximum inertial deceleration occurs when R -

0.6 6RM so that

V
2dO

gMm = R (5)

where g~m denotes the maximum 'effective' gravity (i.e., the deceleration

dVd/dt).
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B. Magnetic Deceleration

We estimate the 'stopping' radius of a magnetically confined

expansion by equating the initial kinetic energy of the plasma with the

magnetic energy in a volume (4/3)nRB3 where RB is defined as the magnetic

confinement radius,

B2

1 HOVdO iigB (6)_

where K0 is the mass of the plasma, VdO is the initial debris expansion

velocity, and B0 is the ambient magnetic field. From (6) we obtain

RB ( 2 / 0 )l/3  (7)

We compare this distance with the equal mass radius R For the expanding

plasma to be confined magnetically we require R < Rm. This leads to VdO

<VAa where VAa 0 B0/(4nama)
1/2  is the Alfven velocity in t;ie ambient

plasma. When VdO << VAa the expanding plasma is stopped before it sweeps

up very much background plasma.

We estimate g., the deceleration caused magnetic field sweep-up,

using conservation of energy. We write

1 2 B02 4i R3(t) M V 2 (8)
SoVd (t) + 8 3 (t)0= O

where the LS of (8) is the sum of the kinetic energy of the expanding

debris and the swept-up magnetic energy at time t and position R, and the

RUS is the energy at t - 0. We solve (8) for Vd(t) and obtain

2 1/2

V(t dO - 0 R ) (9)

We take the time derivative of (9) to obtain

dV 2 B 3V2 2
dd B0  2 VdO R2  (10)

GB(t) " t - r R (to-

where we have made use of the fact that Vd - dR/dt and the definition of
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We note that the maximum deceleration occurs at R - RB, the radius of

maximum expansion.

C. Curvature Acceleration

1. Super-Alfvenic Expansions

We note that the curvature force is given by Fc  B2 /4rR so that

the acceleration gc is

gc = B2/4nrr (11)

where nT = na + nd and 2mT = ma + md. In the super-Alfvenic regime one can

use the relationship B2 - Vd2 41nama (Brecht and Papdopoulos, 1979) and

(3), we revrite (11) as

gc+ fi + 3) (12)

We take ndmd >> nama (Clark, private communication), which is typical of

Starfish for R < R, and find that (12) becomes

na a V2 0 -2
gC ndmA d + (13)

We will assume na is roughly constant, but take nd to be a decreasing

function of radius as follows

n 3 2 2 (14)d - Bmd &R(3R2 + R2)

Substituting (14) into (13) ve find that

222-2
gc V + 3-2R(3R2 + AR 2 ) (15)

where we have made use of the definition of RN.
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2. Sub-Alfvenic Expansions

The assumptions upon which (13) is based are not valid for

sub-Alfvenic expansions. In particular, the magnetic field is not

compressed (i.e., the relationship B2  _ Vd24Jnama is no longer valid) so

that B - B where B0  is the ambient magnetic field. Substituting (14)

into (11) we find that the curvature acceleration in the sub-Alfvenic

regime is given by

2 2 2 + R2

S gR (3R2 + " r R (16)
C M0 R B RB2

We note that gc reaches a minimum at R = AR//3.

D. Ouantitative Results

We present Fig. 1 which is a plot of g (cm/sec 2 ) vs. R (km) for a 1

MT burst at altitudes h - 400 km, 1,000 km, and 10,000 km. The parameters

used are the following: h - 400 km [na 5.0 x 105 cm- 3 and ma - 16 mp

(oxygen background)]; h - 1,000 km [na 1.0 x 103 cm- 3 and m - m-3 a p
(hydrogen background)]; and h = 10,000 km [na - 1.0 cm and ma - m

(hydrogen background)]. In all cases we have taken Vdo = 2.0 x 10

cm/sec, H0 = 5.0 x 105 gm, md = 28 mp (aluminum debris), and Z = 2. These

parameters are shown in Table I along with the relevant expansion

parameters.

For h - 400 km we note that the Alfven Mach number is MA = VdO/V a

9.43 so that R. < RB, as expected. Thus, the h = 400 km burst is super-
I

Alfvenic; we use (4) and (15) to calculate the mass and curvature

decelerations, respectively. The curvature acceleration (Kc) dominates

the mass pick-up deceleration (gM) until R = RH/ 2 where RH = 200 km. For

R > RM/2 the two accelerations are comparable. We note that the total

effective gravity (gT -9 9C + 2g ) is reasonably large throughout the

expansion to RM: T - 10 cm/sec2"

For h - 1,000 and 10,000 km we find that the Alfven Mach number is HA

1.36 x 10-  and 4.71 x 10- 2 , respectively. These bursts are sub-I

Alfvenic and therefore RB < RH. Thus, we use (10) and (16) in calculating

gB and gc' respectively. The burst at h = 1,000 km expands to a radius RB

= 1000 km. Early in the expansion phase we see that gr > g. but that the6 2
magnitude of gc is relatively small, gc - 5 x 10 cm/sec2 . Later in the
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expansion phase g. dominates over gc and becomes reasonably large, gB >

108 cm/sec2 . The burst at h - 10,000 km expands to a radius RB a 5000 km.

In this situation we note that g. > gc throughout the expansion, unlike

the h - 1,000 km burst. However, the magnitude of gB is somewhat smaller

than h - 1,000 km burst; we see that gB > 107 cm/sec 2 for R > 2000 km,

reaching a maximum value B a08 cm/sec2 at R - RB. The reduction in the

value of gB as h increases is simply because the ambient magnetic field

strength is decreasing, all other parameters being equal.

III. STABILITY THEORY

We now explore the stability of the expanding (and decelerating)

debris plasma. A detailed kinetic theory of the stability properties of

sub-Alfvenic plasma expansions in finite 0, collisional plasmas has been

presented in Huba et al. (1989). We will not reproduce the derivation of

the dispersion equation here but refer the interested reader to Huba et

al. (1989) for details.

A. Equilibrium

The plasma configuration and slab geometry used in the analysis are

shown in Fig. 2. We consider a plasma with a density profile n0 (x) such

that 8nOx < 0; we include a magnetic field B - B0 az' an ambient

electric field E - -E 0 ax, and a gravitational acceleration & = g x " The

gravitational acceleration can be associated with the transverse
I

deceleration of a sub-Alfvenic plasma expansion in a magnetic field (i.e.,

- -dVio/dt), a super-Alfvenic expansion in a background plasma, and/or

the curvature acceleration, as described above. For example, in Fig. 2,

one can imagine a plasma shell decelerating as it moves in the +x-

direction. We also assume that the time scale of the instability is much

slower than the electron cyclotron frequency (i.e., w << 2e). We allow

the time scale of the instability to be arbitrary in relation to the ion

cyclotron period.

The electron momentum equation for this situation is given by

0. (E -v x Te Vn0 (17)me 0 c-eO %0Ome n 0

From (17) it is easily shown that the equilibrium electron drift is given

by

7



V V+V (18).o (vE Vde) ey

where VE - cE0 /B0 is the E x B drift velocity and Vde c Te/eB0 L n is the

electron diamagnetic drift velocity where Ln - 1ln n0/ ax - -

The ion momentum equation is given by

0- ez (o Ti Vn 0
mj +0 c 1i0 -m) I no (19)

From (19) the equilibrium ion drift is found to be

E c 0  cTi  1

0 - On I (20)

The components of V0 are the E x B drift [VE - cE0 /Bo], the gravitational

drift [Vg = g/Qi], and the ion diamagnetic drift [V di cT ieZBoLn).

In order to satisfy the equilibrium condition V nVi0 = 0 we choose

to work in the ion rest frame, i.e., iO - 0. Thus, we take

cE0  cTi 1
B - - (21)

9 e ZB0 EL

The ions are electrostatically confined in the unmagnetized limit.

B. Dispersion Equation

For the parameters given in Table I we note p (= 8nnT/B2) 1, ven

<< %, and Vin << 91. Thus, we will use the low P (i.e., electrostatic),

collisionless dispersion equation derived in Huba et al. (1989). In this

limit the dispersion equation is

22ro(b

DDik1+ -G+ iWG +- 100 (22)
y 22 k2v2  i k2v2 l -0

e yi ye

where
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12. k V di-
Gi . dt exp[i(o + kyVdi)t , 2 ypit os 2it-1) + i g in 2 ,

- kV - k , .2 4iZ 2e2 /m. and .2

1 y VE' w2 - w - kyVE - kyVde pi 2 ./e Z 2e 2 I 2nw pe 2 .
4ne 2/me, VE V + Vdi' Vg - g/2 V Vdi a cTi/eZBLn, y /2,

kye e e 2T/m, TO = exp(-x)Io(x), and I0 (x) is the

modified Bessel function of order 0. This dispersion equation is valid

for w << Qi' to - 9, and ( >> Ri; thus, it describes the Rayleigh-Taylor

instability in both the magnetized and unmagnetized ion limits.

1. PFgh Frequency Limit (w >> Qi)

We first simplify (22) by consideing the high frequency (y > 9i

where y is the growth rate), short wavelength (kyPi >> 1), cold electron

limit (T - 0). In this limit we note that Gi M -i&i Z(&i)/w where E. -

w/kyvi, and ro(be) = 1 - be• The dispersion equation then becomes

D(,ky)- I + e + !S (I+!L 0 (23)22( 1 k 2v2 (a-kV =
SkyVi y i

We further simplify (23) by assuming the ions to be either cold

(w/kyVi >> 1) or warm (wdkyvi << 1), which corresponds to the strong drift

velocity regime (VE >> vi) or the weak drift velocity regime (VE " v« )

respectively.

a. Cold Ion Limit (kkyVi >> 1)

We first consider the cold ion limit: w/kyvi >> 1 [the

strong drift regime (i.e., VE >> vi)I. We expand the plasma dispersion

function in (23) in its asymptotic limit. The dispersion equation then

becomes

w 2 02 ikywdi 1 - P we 0 (24)

('y) -2 k2v 2 kyVE 92
yi e

We can rewrite (24) in the following form

22
2 kV = (25)

(o lh)(O yE 91k L

9



vhere &lh - 'pi/(l + 'pe2/ 1202 )1/2 is the lover hybrid frequency. Equation

(25) is very similar to the dispersion equation derived by Krall and

Liever (1971) for the lover-hybrid-drift instability (see Eq. (7) of their

paper); in the limit g 4 0 it agrees exactly vith their dispersion

equation. Following the analysis of Krall and Liever (197!) one can show

that the maximum growth rate of the instability is y. =  wlh with Wr = ky VE

= lh" From (25) it is clear that the instability is fluid-like and is

caused by the coupling of a lover hybrid wave (W = Wlh) with a drift wave

= kyVE ) in an inhomogeneous plasma (i.e., finite Ln).

Equation (25) yields a relatively simple solution in the low

frequency limit, i.e., & << 'lh" It is given by

2 _jkyL w + k =gL = 0 (26)

where we have assumed Vg >> Vdi Equation (26) has previously been

derived from fluid theory by Hassam and Huba (1987, 1988). The

eigenfrequency is given by

i QkyLn ± [(ikyLn)2 - 4gLnk2 11 /2 (27)

Instability occurs for gIL > 9.2/4. In the limit of large g one finds
1/2 n 1

that y ik(gLn) •

b. Warm Ion Limit (w/kyvi << 1)

We now consider the varm ion limit: w/kyVi << 1 [the weak

drift regime (i.e., VE << vi)). For this situation it is found that the

instability is kinetic in nature; the unstable waves grow because of

inverse Landau damping of the ions. We expand the plasma dispersion

function in (23) in the small argument limit. The dispersion equation

then becomes

ky~k 1 !di+ pe 0 (28)
y) k 2 + v2  k k2v2 kvi k2v2 w - kyVE +2

yv y yi y e

Equation (34) can be rewritten as follows

10



k 2  k 2  kV2k k1 kyVd i k i/nw (29)
02 + j w - kyVE *k2 kyv(
y y y

where

k 2  Pi (1 2 pekM =v 2 g2

Assuming that (r > > Y, the real frequency is determined from D(wr,ky) . 0

and we find that

k2

= 2 + kygV . (30)
mr kydik yg

y+ kM

From (30) we see that

r di +kyV for k << kM (31a)

wr ky(Vdi + Vg) for ky >> kM (31b)

There is a significant difference in the k dependence of the realY
frequency between the ion diamagnetic drift and the gravitational drift in

the long wavelength regime, ky << kM .  For the case of the lower-hybrid-

drift instability (Vdi >> V ) it is found that or - ky3 ,while for the

unmagnetized ion Rayleigh-Taylor instability (Vg >> Vdi) wr -ky'

The growth rate is de' rmined by the expression y =

-D i(w r,k y)/(3D r w ) where the subscripts r and i refer to the real and

imaginary components of D, respectively. We find that

k_2 \V ik2  V V
k 2rdi V' + _& di  (2

- k;2 Vi k#y + kv - (32)

For the case V = 0, (30) and (32) reduce to the expressions for wrgr

and y derived in Davidson et al. (1977) for the lower-hybrid-drift

11



instability. It can be shown that the growth rate maximizes at ky kM;

the growth rate and real frequency at ky - kM are given by

/211 Vdi

!2:n Vdi(33)TM = 8 2 'lhvi

1 (34)
O= 2 kMVdi

In the opposite limit, when the gravitational drift dominates (i.e.,

Vg >> Vdi) we find that the maximum growth rate occurs at ky - kM/I 3 ; the

corresponding values of the growth rate and real frequency are given by

2 . 1/2 9 _' (34)
3 16 v v i Wlh

wM - kMVg (35)

One interesting difference between the growth rate in the strong drift

limit and weak drift limit is the dependence on the density gradient scale

length. In the former case we found that y a Ln1/2 (see (27)), while in

the latter case Y c Ln-1 (see (34)). The requirement for the unmagnetized

ion Rayleigh-Taylor instability to be unstable in the kinetic regime is y

> 9,; from (34) we find that the turn-on condition is roughly g/Ln >1/2 2(me/mi) 2 2. This criterion is considerably less stringent than that

for the unmagnetized ion Rayleigh-Taylor instability in the fluid limit
(i.e., g/Ln > 22/4).

2. Low Frequency Limit (o << 21)

Ve now consider the low frequency (t << 9i), short wavelength

(kypi << 1) limit. In this limit we note that

G i  (1+ )(1 - bi) (36)

and the dispersion equation becomes

12



2 2W2  2 2  kV
+ + i 2 1 1 + (1 + w )(1 -bi)] + 22w-kV 0 (37)

e i i y

where b - ky 2 Pi2/2. In the limit that OP2/g 12 " Owp 2 /9 2 >>1it is

easily shown that (37) reduces to

W 2 _(kyVg + kyd)w + 0~ (38)

2yd 2L 2 nyd

which is the usual dispersion equation for the Rayleigh-Taylor instability

in the limit of magnetized ions. In the limit w >> kyV, ky Vdi the

growth rate is simply given by y a (g/Ln) . The instability is

stabilized when (k y Vg + kyV)di) > 4g/L; this is the so-called finite

Larmor radius stabilization of the Rayleigh-Taylor instability (Roberts

and Taylor, 1962).

IV. APPLICATION TO VHANES

We now apply the results of the stability analysis presented in

Section III to the nuclear burst parameters presented in Section II. We

first write down the turn-on conditions for the instabilities discussed in

the previous section. We cast these conditions in terms of the growth

rate of the conventional Rayleigh-Taylor instability, i.e., y

Instability Turn-on Criterion

Unmagnetized Ion Rayleigh- TO > 91/
Taylor: Fluid Limit

Unmagnetized Ion Rayleigh- e
Taylor: Kinetic Limit>(mm,

Magnetized Ion Rayleigh- y gnak y rese y edi )
Taylor: MUD LimitTO>kV +kV )2

In Fig. 3 we plot y/Qi vs. R for the burst parameters shown in Fig.

1. In calculating To we have taken the density gradient scale length to

be Ln = 50 km. We also indicate the turn-on values for the unmagnetized

ion Rayleigh-Taylor instabilities: yy/,1 > 0.5 the fluid mode is unstable,

13



and Y0/Ri > 0.066 the kinetic mode is unstable. The magnetized ion

Rayleigh-Taylor instability will be. unstable for sufficiently small

vavenumbers (i.e., k"Pi << 1). For the burst at altitude h - 400 km
y3 3-1

(Starfish), we note that Qi - Qio(VdO/VAa)(l + R /RM3 )- which is based on
2 2the relationship B - 4 namaVd2. Thus, we account for the compression of

the magnetic field in the debris shell which occurs in a super-Alfvenic

expansion. We see that 7O/i S 0.02 for R < RM so that the debris shell

is stable to the unmagnetized ion Rayleigh-Taylor instabilities. For the

burst at h . 1,000 km we find that the kinetic instability may go unstable

at R = RB. However, the burst at h - 10,000 km is strongly unstable to

both the kinetic instability (which turns-on at R = 400 km) and the fluid

instability (which turns-on at R = 4000 km).

An important consideration in the above discussion is the sensitivity

of the stability criterion to the density gradient scale length. For

example, if we had chosen Ln = 5 km for the burst at h - 400 km, then the

curve Yo/Qi would be increased by a factor of 3 and the kinetic

instability would be unstable near R RM . On the other hand, if the

density gradient scale length were Ln =100 km for the burst at h - 1,000

km, then the expansion would be predicted to be stable to the unmagnetized

ion Rayleigh-Taylor instability. Moreover, the density gradient scale

length will probably not be constant during the expansion; clearly,

computer simulations are needed to better determine the thickness of the

debris shell as it expands and decelerates.

Finally, we present Fig. 4 which is a plot of y/2i versus kyPi . We

solve (22) numerically for a set of parameters relevant to the burst at h

- 10,000 km at an expansion radius R 5,000 km. We consider the

following parameters: Vg/vi 4.0, Vdi/Vi 0.014, Ln = 50 km, Te/Ti m
1.0, T = Td a Ta - 50 ev, i " 0.0, Wpe/Qe - 10.0, Z = 2, and Ud 28

(aluminum). The two branches of unstable modes are apparent. In the low

frequency (y < 2i), long wavelength limit (kyPi << 1) we obtain the

conventional magnetized ion Rayleigh-Taylor instability; for kyPi << we

find that the growth rate asymptotes to the standard growth rate YO M

(g/L )1/2 a 0.335 Q." The local approximation breaks down for kyLn < 1

which occurs for kypi = 0.028 so that the results presented are valid. As

kyp i increases above kyP i - 0.15 we see that the mode becomes stable

because of finite Larmor radius effects and the real frequency associated

14



with the gravitational drift wave. In the high frequency (y > Qi), short

wavelength limit (kypi >> 1) we find the unmagnetized ion Rayleigh-Taylor

instability which is driven by a coupling between the gravitational drift

wave and the lower hybrid wave. The growth rate maximizes for wr a wlh

where 01h = (eQe ) 1/2 is the lower hybrid frequency. For the parameters

chosen, we find that the growth rate maximizes at kyPi a 40 which

corresponds to a wavelength X = 200 m. On the other hand, if we were to

assume that the dominant wavelength is X = Ln, this would correspond to

kypi = 0.176 which is stable for the parameters chosen.

We add that we have chosen a single set of parameters; based on these

parameters our results suggest that the unmagnetized ion Rayleigh-Taylor

instability (or the large Larmor radius instability) can play a dominant

role in the structuring of the debris shell for a VHANE. However, the

results are sensitive to several parameters, in particular the density

gradient scale length, and simulation studies are needed to better

determine the macroscopic parameters associated with a VHANE (Thomas and

Brecht, 1988; Winske, 1989).

V. DISCUSSION

The stability of the debris shell of a nuclear burst at altitudes h >

400 km is investigated. A set of relatively simple expressions are

derived to estimate the effective gravitational acceleration associated

with the deceleration of the shell (by mass 'pick-up' and magnetic field

'sweep-up') and the curvature of the magnetic field. We then present a

stability analysis based on the recent kinetic theory developed by Huba et

al. (1989). In particular, the 'turn-on, conditions for the unmagnetized

ion Rayleigh-Taylor instability are derived for both the fluid and kinetic

regimes, as well as the finite Larmor radius stabilization criterion for

the magnetized ion Rayleigh-Taylor instability. We apply these results to

1 MT bursts at altitudes h - 400 ki, 1,000 km, and 10,000 km. We find the

burst at h - 400 km to be stable to the unmagnetized ion Rayleigh-Taylor

instability; the burst at h - 1,000 is marginally unstable to the kinetic

instability; and the burst at h a 10,000 km is strongly unstable to both

the kinetic and fluid unmagnetized ion Rayleigh-Taylor instabilities. On

the other hand, the magnetized ion Rayleigh-Taylor instability is unstable

at all altitudes and may cause structuring of the debris shell depending

15



on the growth rate of the instability. A critical parameter in

determining the stability properties of the debris shell is the density

gradient scale length (or shell thickness). It is recommended that

detailed 2D and/or 3D computer simulations be performed to quantify the

macroscopic parameters associated with the expansion of the debris shell

(Thomas and Brecht, 1988; Winske, 1989)
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TABLE I: BURST .PARAMETERS

Burst Altitude h (ki)

400 1,000 10,000

Initial expansion velocity (Vdo) 2000 km/sec 2000 km/sec 2000 km/sec

Mass of burst (M0 ) 5.0 x 105 gm 5.0 x 105 gm 5.0 x 105 gm

Ambient magnetic field (G) 0.28 0.21 0.020

Debris atomic number (u d) 28 28 28

Background atomic number (p a) 16 1 1

Ambient density (na) 5.0 x 105 cm- 3 1.0 x 103 cm- 1 cm-

Debris temperature (Td) 50 ev 50 ev 50 ev

Debris thermal velocity (vd) 18.5 km/sec 18.5 km/sec 18.5 km/sec

Debris charge state (Z) 2 2 2

Density gradient scale length (Ln) 50 km 50 km 50 km

Ambient cyclotron frequency (Q) 188 rad/sec 146 rad/sec 13.3 rad/sec

Directed Larmor radius (Vd0/2i) 10.6 km 13.7 km 150 km

Ambient Alfven velocity (Vda) 2 x 102 km/sec 2 x 10
4 km/sec 4 x 10 km/sec

Alfven Mach number (MA) 9.43 0.136 0.047

Equal mass radius (% )  2.0 x 10 km 4.1 x 103 km 4.1 x 10 km

Magnetic confinement radius (R3) 9.1 x 10 km 1.1 x 103 km 5.3 x 103 km
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Fig. I - Plot of g(cmsec2 ) vs R(km) foralI MT burst at altitudes h =400 km, 1,000kIa, and 10,000 km- The parame-
ters used are the folowing: h = 400 km In. = 5.0 x 1iOS CM- and m, = 16 Inp (oxygen background)); h = 1,000 kmn
in, = 1.0 X 1()3 CM- and M, = nip (hydrogen background)]; and h = 100,000 km In. = 1.0 CM-3 and m. =mni (hydro-
gen background)]. In all cases we have taken V410 = 2.0 x 10's cm/sec, MO = 5.0 x 10' gin, Mn4 = 28 mp1 (aluminum
debris), and Z - 2. These parameters ame shown in Table I along with the relevant expansion parameters.
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Fig. 3 - Plot of yo/ 0 , vs R for the burst parameters shown in Fig. I. In calculating "Yo we have taken the density gradient
scale length to be L, = 50 kIn. We also indicate the turn-on values for the unmagnetized ion Rayleigh-Taylor instabilities;
-yo/Q0 > 0.5 the fluid mode is unstable, and -0/ 0, > 0.066 the kinetic mode is unstable. The magnetized ion Rayleigh-
Taylor instability will be unstable for sufficiently small wavenumbers (i.e., kp, << 1).
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Fig. 4 - Plot of -y/Q, vs kypi for a set of parameters relevant to the burst at h = 10.000 km at an expansion radius R =
5,000 km. We consider the following parameters: V./v, = 4.0, Vdi/v, = 0.014, L, = 50 km, Te/T, = 1.0,
T, = Td = T. = 50ev, Oi = 0.0, pIO, = 10.0, Z = 2, and Ad = 28 (aluminum).
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